Para estimar a área da figura ABDO (sombreada no desenho), onde a curva AB é parte da representação gráfica da função f(x) = 2x, João demarcou o retângulo OCBD e, em seguida, usou um programa de computador que “plota” pontos aleatoriamente no interior desse retângulo.
Sabendo que dos 1000 pontos “plotados”, apenas 540 ficaram no interior da figura ABDO, a área estimada dessa figura, em unidades de área, é igual a
A) 4,32.
B) 4,26.
C) 3,92.
D) 3,84.
E) 3,52.
Questão 2 — Aplicada em: 2016 - Banca: INEP: Órgão: ENEM Prova: Exame Nacional do Ensino Médio - Primeiro e Segundo Dia (2ª Aplicação)
O governo de uma cidade está preocupado com a possível epidemia de uma doença infectocontagiosa causada por bactéria. Para decidir que medidas tomar, deve calcular a velocidade de reprodução da bactéria. Em experiências laboratoriais de uma cultura bacteriana, inicialmente com 40 mil unidades, obteve-se a fórmula para a população:
p(t) = 40 • $2^{{3t}}$ em que t é o tempo, em hora, e p(t) é a população, em milhares de bactérias.
Em relação à quantidade inicial de bactérias, após 20 min, a população será:A) reduzida a um terço.
B) reduzida à metade.
C) reduzida a dois terços.
D) duplicada.
E) triplicada.
Questão 3— Aplicada em: 2016 - Banca: INEP: Órgão: ENEM Prova: Exame Nacional do Ensino Médio - Primeiro e Segundo Dia (2ª Aplicação)
Admita que um tipo de eucalipto tenha expectativa de crescimento exponencial, nos primeiros anos após seu plantio, modelado pela função $y(t) = a^{t -1}$, na qual y representa a altura da planta em metro, t é considerado em ano, e a é uma constante maior que 1 . O gráfico representa a função y.
Admita ainda que y(0) fornece a altura da muda quando plantada, e deseja-se cortar os eucaliptos quando as mudas crescerem 7,5 m após o plantio.
O tempo entre a plantação e o corte, em ano, é igual a
A) 3.
B) 4.
C) 6.
D) $\log_{2} 7$.
E) $\log_{2} 15$.
A população mundial está ficando mais velha, os índices de natalidade diminuíram e a expectativa de vida aumentou. No gráfico seguinte, são apresentados dados obtidos por pesquisa realizada pela Organização das Nações Unidas (ONU), a respeito da quantidade de pessoas com 60 anos ou mais em todo o mundo. Os números da coluna da direita representam as faixas percentuais. Por exemplo, em 1950 havia 95 milhões de pessoas com 60 anos ou mais nos países desenvolvidos, número entre 10% e 15% da população total nos países desenvolvidos.
A) 490 e 510 milhões.
B) 550 e 620 milhões.
C) 780 e 800 milhões.
D) 810 e 860 milhões.
E) 870 e 910 milhões.
B) 4.
C) 6.
D) $\log_{2} 7$.
E) $\log_{2} 15$.
A população mundial está ficando mais velha, os índices de natalidade diminuíram e a expectativa de vida aumentou. No gráfico seguinte, são apresentados dados obtidos por pesquisa realizada pela Organização das Nações Unidas (ONU), a respeito da quantidade de pessoas com 60 anos ou mais em todo o mundo. Os números da coluna da direita representam as faixas percentuais. Por exemplo, em 1950 havia 95 milhões de pessoas com 60 anos ou mais nos países desenvolvidos, número entre 10% e 15% da população total nos países desenvolvidos.
Suponha que o modelo exponencial $y=363e^{{0,03x}}$, em que x = 0 corresponde ao ano 2000, x = 1 corresponde ao ano 2001, e assim sucessivamente, e que y é a população em milhões de habitantes no ano x, seja usado para estimar essa população com 60 anos ou mais de idade nos países em desenvolvimento entre 2010 e 2050. Desse modo, considerando $e^{0,3} = 1,35$ , estima-se que a população com 60 anos ou mais estará, em 2030, entre
A) 490 e 510 milhões.
B) 550 e 620 milhões.
C) 780 e 800 milhões.
D) 810 e 860 milhões.
E) 870 e 910 milhões.
ENEM 2011 - Questão 177 – Prova Azul.
Considere que uma pessoa decida investir uma determinada quantia e que lhe sejam apresentadas três possibilidades de investimento, com rentabilidades líquidas garantidas pelo período de um ano, conforme descritas:
Investimento A: 3% ao mês
Investimento B: 36% ao ano
Investimento C: 18% ao semestre
As rentabilidades, para esses investimentos, incidem sobre o valor do período anterior. O quadro fornece algumas aproximações para a análise das rentabilidades:
Para escolher o investimento com a maior rentabilidade anual, essa pessoa deverá
A) escolher qualquer um dos investimentos A, B ou C, pois as suas rentabilidades anuais são iguais a 36%.
B) escolher os investimentos A ou C, pois suas rentabilidades anuais são iguais a 39%.
C) escolher o investimento A, pois a sua rentabilidade anual é maior que as rentabilidades anuais dos investimentos B e C.
D) escolher o investimento B, pois sua rentabilidade de 36% é maior que as rentabilidades de 3% do investimento A e de 18% do investimento C.
E) escolher o investimento C, pois sua rentabilidade de 39% ao ano é maior que a rentabilidade de 36% ao ano dos investimentos A e B.
A) escolher qualquer um dos investimentos A, B ou C, pois as suas rentabilidades anuais são iguais a 36%.
B) escolher os investimentos A ou C, pois suas rentabilidades anuais são iguais a 39%.
C) escolher o investimento A, pois a sua rentabilidade anual é maior que as rentabilidades anuais dos investimentos B e C.
D) escolher o investimento B, pois sua rentabilidade de 36% é maior que as rentabilidades de 3% do investimento A e de 18% do investimento C.
E) escolher o investimento C, pois sua rentabilidade de 39% ao ano é maior que a rentabilidade de 36% ao ano dos investimentos A e B.
;)
ResponderExcluir:)
ResponderExcluir