Suponhamos os algarismos
abc?
A forma fatorada
$abc=a.10^2+b.10+c$$abc=a.(99+1)+b.(9+1)+c$ aplicando a distributiva
$abc=99a+a+9b+b +c$ organizando temos;
$abc=\boxed{99a+9b}+\boxed{a+b +c}$
concluímos que;
$\boxed{99a+9b}$ é múltiplo de 3
$\boxed{99a+9b}$ é múltiplo de 3
e é necessário que $\boxed{a+b +c}$ seja múltiplo de 3
Post A Comment:
0 comments:
Segue alguns símbolos, caso necessitem utilizá-los:
____________________________________________
α β γ δ ∆ λ μ Ω ο ρ φ χ ψ ξ ε η θ π ∂ ∑ ∏ ℮ אօ ∞ ℝ ℕ ℚ ℤ Ø f◦g
½ ¼ ¾ ½ ⅓ ⅔ ⅛ ⅜ ⅝ ⅞ ² ³ ¹ º ª ₁ ₂ ₃ ₄ ≈ ≠ ≡ ∀ ∃ ⇒ ⇔ → ↔
∈∋∧ ∨ ⊂ ⊃ ∩ ∪ − + × ± ∓ ÷ √ ∛ ∜ ⊿∟ ∠→ ↑ ↓ ↕ ← ≤ ≥
outros
√ ∇ ∂ ∑ ∏ ∫ ≠ ≤ ≥ ∼ ≈ ≅ ≡ ∝ ⇒ ⇔ ∈ ∉ ⊂ ⊃ ⊆ ⊇ \ ∩ ∪ ∧ ∨ ∀ ∃ ℜ ℑ